1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
//! The abstract **Primitive** base class is the bridge between the
//! geometry processing and shading subsystems of pbrt.

// std
use std::sync::Arc;
// pbrt
use crate::accelerators::bvh::BVHAccel;
use crate::accelerators::kdtreeaccel::KdTreeAccel;
use crate::core::geometry::nrm_dot_nrmf;
use crate::core::geometry::{Bounds3f, Ray};
use crate::core::interaction::SurfaceInteraction;
use crate::core::light::Light;
use crate::core::material::{Material, TransportMode};
use crate::core::medium::{Medium, MediumInterface};
use crate::core::pbrt::Float;
use crate::core::shape::Shape;
use crate::core::transform::{AnimatedTransform, Transform};

// see primitive.h

pub enum Primitive {
    Geometric(Box<GeometricPrimitive>),
    Transformed(Box<TransformedPrimitive>),
    BVH(Box<BVHAccel>),
    KdTree(Box<KdTreeAccel>),
}

impl Primitive {
    pub fn world_bound(&self) -> Bounds3f {
        match self {
            Primitive::Geometric(primitive) => primitive.world_bound(),
            Primitive::Transformed(primitive) => primitive.world_bound(),
            Primitive::BVH(primitive) => primitive.world_bound(),
            Primitive::KdTree(primitive) => primitive.world_bound(),
        }
    }
    pub fn intersect(&self, ray: &Ray, isect: &mut SurfaceInteraction) -> bool {
        match self {
            Primitive::Geometric(primitive) => {
                let hit_surface: bool = primitive.intersect(ray, isect);
                if hit_surface {
                    isect.primitive = Some(self);
                }
                hit_surface
            }
            Primitive::Transformed(primitive) => primitive.intersect(ray, isect),
            Primitive::BVH(primitive) => primitive.intersect(ray, isect),
            Primitive::KdTree(primitive) => primitive.intersect(ray, isect),
        }
    }
    pub fn intersect_p(&self, ray: &Ray) -> bool {
        match self {
            Primitive::Geometric(primitive) => primitive.intersect_p(ray),
            Primitive::Transformed(primitive) => primitive.intersect_p(ray),
            Primitive::BVH(primitive) => primitive.intersect_p(ray),
            Primitive::KdTree(primitive) => primitive.intersect_p(ray),
        }
    }
    pub fn get_area_light(&self) -> Option<Arc<Light>> {
        match self {
            Primitive::Geometric(primitive) => primitive.get_area_light(),
            Primitive::Transformed(primitive) => primitive.get_area_light(),
            Primitive::BVH(primitive) => primitive.get_area_light(),
            Primitive::KdTree(primitive) => primitive.get_area_light(),
        }
    }
    pub fn get_material(&self) -> Option<Arc<Material>> {
        match self {
            Primitive::Geometric(primitive) => primitive.get_material(),
            Primitive::Transformed(primitive) => primitive.get_material(),
            Primitive::BVH(primitive) => primitive.get_material(),
            Primitive::KdTree(primitive) => primitive.get_material(),
        }
    }
    pub fn compute_scattering_functions(
        &self,
        isect: &mut SurfaceInteraction,
        mode: TransportMode,
        allow_multiple_lobes: bool,
    ) {
        if let Some(ref material) = self.get_material() {
            material.compute_scattering_functions(
                isect,
                mode,
                allow_multiple_lobes,
                Some(material.clone()),
                None,
            );
        }
        assert!(
            nrm_dot_nrmf(&isect.common.n, &isect.shading.n) >= 0.0,
            "n: {:?} dot shading.n: {:?}",
            isect.common.n,
            isect.shading.n
        );
    }
}

#[derive(Clone)]
pub struct GeometricPrimitive {
    pub shape: Arc<Shape>,
    pub material: Option<Arc<Material>>,
    pub area_light: Option<Arc<Light>>,
    pub medium_interface: Option<Arc<MediumInterface>>,
}

impl GeometricPrimitive {
    pub fn new(
        shape: Arc<Shape>,
        material: Option<Arc<Material>>,
        area_light: Option<Arc<Light>>,
        medium_interface: Option<Arc<MediumInterface>>,
    ) -> Self {
        if let Some(area_light) = area_light {
            if let Some(medium_interface) = medium_interface {
                GeometricPrimitive {
                    shape,
                    material,
                    area_light: Some(area_light),
                    medium_interface: Some(medium_interface),
                }
            } else {
                GeometricPrimitive {
                    shape,
                    material,
                    area_light: Some(area_light),
                    medium_interface: None,
                }
            }
        } else if let Some(medium_interface) = medium_interface {
            GeometricPrimitive {
                shape,
                material,
                area_light: None,
                medium_interface: Some(medium_interface),
            }
        } else {
            GeometricPrimitive {
                shape,
                material,
                area_light: None,
                medium_interface: None,
            }
        }
    }
    // Primitive
    pub fn world_bound(&self) -> Bounds3f {
        self.shape.world_bound()
    }
    pub fn intersect(&self, ray: &Ray, isect: &mut SurfaceInteraction) -> bool {
        let mut t_hit: Float = 0.0;
        if self.shape.intersect(ray, &mut t_hit, isect) {
            // TODO: isect.primitive
            {
                ray.t_max.set(t_hit);
            }
            // let it: &SurfaceInteraction = isect_rc.borrow();
            assert!(nrm_dot_nrmf(&isect.common.n, &isect.shading.n) >= 0.0 as Float);
            // initialize _SurfaceInteraction::mediumInterface_ after
            // _Shape_ intersection
            if let Some(ref medium_interface) = self.medium_interface {
                if medium_interface.is_medium_transition() {
                    isect.common.medium_interface = Some(medium_interface.clone());
                } else if let Some(ref medium_arc) = ray.medium {
                    let inside: Option<Arc<Medium>> = Some(medium_arc.clone());
                    let outside: Option<Arc<Medium>> = Some(medium_arc.clone());
                    isect.common.medium_interface =
                        Some(Arc::new(MediumInterface::new(inside, outside)));
                }
                // print!("medium_interface = {{inside = ");
                // if let Some(ref inside) = medium_interface.inside {
                //     print!("{:p} , outside = ", inside);
                // } else {
                //     print!("0x0 , outside = ")
                // }
                // if let Some(ref outside) = medium_interface.outside {
                //     println!("{:p}}}", outside);
                // } else {
                //     println!("0x0}}")
                // }
            }
            true
        } else {
            false
        }
    }
    pub fn intersect_p(&self, r: &Ray) -> bool {
        self.shape.intersect_p(r)
    }
    pub fn get_material(&self) -> Option<Arc<Material>> {
        if let Some(ref material) = self.material {
            Some(material.clone())
        } else {
            None
        }
    }
    pub fn get_area_light(&self) -> Option<Arc<Light>> {
        if let Some(ref area_light) = self.area_light {
            Some(area_light.clone())
        } else {
            None
        }
    }
}

pub struct TransformedPrimitive {
    pub primitive: Arc<Primitive>,
    pub primitive_to_world: AnimatedTransform,
}

impl TransformedPrimitive {
    pub fn new(primitive: Arc<Primitive>, primitive_to_world: AnimatedTransform) -> Self {
        TransformedPrimitive {
            primitive,
            primitive_to_world,
        }
    }
    // Primitive
    pub fn world_bound(&self) -> Bounds3f {
        self.primitive_to_world
            .motion_bounds(&self.primitive.world_bound())
    }
    pub fn intersect(&self, r: &Ray, isect: &mut SurfaceInteraction) -> bool {
        // compute _ray_ after transformation by _self.primitive_to_world_
        let mut interpolated_prim_to_world: Transform = Transform::default();
        self.primitive_to_world
            .interpolate(r.time, &mut interpolated_prim_to_world);
        let mut ray: Ray = Transform::inverse(&interpolated_prim_to_world).transform_ray(&*r);
        if self.primitive.intersect(&mut ray, isect) {
            r.t_max.set(ray.t_max.get());
            // transform instance's intersection data to world space
            if !interpolated_prim_to_world.is_identity() {
                interpolated_prim_to_world.transform_surface_interaction(isect);
                // let new_isect = interpolated_prim_to_world.transform_surface_interaction(isect);
                // assert!(nrm_dot_nrmf(&new_isect.n, &new_isect.shading.n) >= 0.0 as Float);
                // let mut is: SurfaceInteraction = SurfaceInteraction::new(
                //     &new_isect.p,
                //     &new_isect.p_error,
                //     new_isect.uv,
                //     &new_isect.wo,
                //     &new_isect.dpdu,
                //     &new_isect.dpdv,
                //     &new_isect.dndu,
                //     &new_isect.dndv,
                //     new_isect.time,
                //     None,
                // );
                // // we need to preserve the primitive pointer
                // if let Some(primitive) = isect.primitive {
                //     is.primitive = Some(primitive);
                // }
                // // keep shading (and normal)
                // is.n = new_isect.n;
                // is.shading.n = new_isect.shading.n;
                // is.shading.dpdu = new_isect.shading.dpdu;
                // is.shading.dpdv = new_isect.shading.dpdv;
                // is.shading.dndu = new_isect.shading.dndu;
                // is.shading.dndv = new_isect.shading.dndv;
                return true;
            }
            false
        } else {
            false
        }
    }
    pub fn intersect_p(&self, r: &Ray) -> bool {
        let mut interpolated_prim_to_world: Transform = Transform::default();
        self.primitive_to_world
            .interpolate(r.time, &mut interpolated_prim_to_world);
        interpolated_prim_to_world = Transform::inverse(&interpolated_prim_to_world);
        self.primitive
            .intersect_p(&interpolated_prim_to_world.transform_ray(&*r))
    }
    pub fn get_material(&self) -> Option<Arc<Material>> {
        None
    }
    pub fn get_area_light(&self) -> Option<Arc<Light>> {
        None
    }
}