1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
//! Various probability distributions for sampling light sources.

// std
use std::rc::Rc;
use std::sync::Arc;
// others
use atom::AtomSetOnce;
use atomic::{Atomic, Ordering};
use strum::IntoEnumIterator;
// pbrt
use crate::core::geometry::{Bounds3f, Normal3f, Point2f, Point3f, Point3i, Vector3f, XYZEnum};
use crate::core::integrator::compute_light_power_distribution;
use crate::core::interaction::InteractionCommon;
use crate::core::light::VisibilityTester;
use crate::core::lowdiscrepancy::radical_inverse;
use crate::core::pbrt::clamp_t;
use crate::core::pbrt::{Float, Spectrum};
use crate::core::sampling::Distribution1D;
use crate::core::scene::Scene;

// see lightdistrib.h

/// LightDistribution defines a general interface for classes that
/// provide probability distributions for sampling light sources at a
/// given point in space.
pub enum LightDistribution {
    Uniform(UniformLightDistribution),
    Power(PowerLightDistribution),
    Spatial(SpatialLightDistribution),
}

impl LightDistribution {
    pub fn lookup(&self, p: &Point3f) -> Arc<Distribution1D> {
        match self {
            LightDistribution::Uniform(distribution) => distribution.lookup(p),
            LightDistribution::Power(distribution) => distribution.lookup(p),
            LightDistribution::Spatial(distribution) => distribution.lookup(p),
        }
    }
}

#[derive(Debug)]
struct HashEntry {
    packed_pos: Atomic<u64>,
    distribution: AtomSetOnce<Arc<Distribution1D>>,
}

/// The simplest possible implementation of LightDistribution: this
/// returns a uniform distribution over all light sources, ignoring
/// the provided point. This approach works well for very simple
/// scenes, but is quite ineffective for scenes with more than a
/// handful of light sources. (This was the sampling method originally
/// used for the PathIntegrator and the VolPathIntegrator in the
/// printed book, though without the UniformLightDistribution class.)
pub struct UniformLightDistribution {
    pub distrib: Arc<Distribution1D>,
}

impl UniformLightDistribution {
    pub fn new(scene: &Scene) -> Self {
        let prob: Vec<Float> = vec![1.0 as Float; scene.lights.len()];
        UniformLightDistribution {
            distrib: Arc::new(Distribution1D::new(prob)),
        }
    }

    // LightDistribution

    /// Given a point |p| in space, this method returns a (hopefully
    /// effective) sampling distribution for light sources at that
    /// point.
    pub fn lookup(&self, _p: &Point3f) -> Arc<Distribution1D> {
        self.distrib.clone()
    }
}

/// PowerLightDistribution returns a distribution with sampling
/// probability proportional to the total emitted power for each
/// light. (It also ignores the provided point |p|.)  This approach
/// works well for scenes where there the most powerful lights are
/// also the most important contributors to lighting in the scene, but
/// doesn't do well if there are many lights and if different lights
/// are relatively important in some areas of the scene and
/// unimportant in others. (This was the default sampling method used
/// for the BDPT integrator and MLT integrator in the printed book,
/// though also without the PowerLightDistribution class.)
pub struct PowerLightDistribution {
    pub distrib: Option<Arc<Distribution1D>>,
}

impl PowerLightDistribution {
    pub fn new(scene: &Scene) -> Self {
        PowerLightDistribution {
            distrib: compute_light_power_distribution(scene),
        }
    }

    // LightDistribution

    /// Given a point |p| in space, this method returns a (hopefully
    /// effective) sampling distribution for light sources at that
    /// point.
    pub fn lookup(&self, _p: &Point3f) -> Arc<Distribution1D> {
        if let Some(distrib) = &self.distrib {
            distrib.clone()
        } else {
            // WARNING: this should only happen if scene.lights.is_empty()
            let prob: Vec<Float> = Vec::new();
            Arc::new(Distribution1D::new(prob))
        }
    }
}

/// A spatially-varying light distribution that adjusts the
/// probability of sampling a light source based on an estimate of its
/// contribution to a region of space.  A fixed voxel grid is imposed
/// over the scene bounds and a sampling distribution is computed as
/// needed for each voxel.
pub struct SpatialLightDistribution {
    pub scene: Scene,
    pub n_voxels: [i32; 3],
    hash_table: Box<[HashEntry]>,
    pub hash_table_size: usize,
}

impl SpatialLightDistribution {
    pub fn new(scene: &Scene, max_voxels: u32) -> Self {
        // compute the number of voxels so that the widest scene
        // bounding box dimension has maxVoxels voxels and the other
        // dimensions have a number of voxels so that voxels are
        // roughly cube shaped.
        let b: Bounds3f = *scene.world_bound();
        let diag: Vector3f = b.diagonal();
        let bmax_i: XYZEnum = match b.maximum_extent() {
            0 => XYZEnum::X,
            1 => XYZEnum::Y,
            _ => XYZEnum::Z,
        };
        let bmax: Float = diag[bmax_i];
        let mut n_voxels: [i32; 3] = [0_i32; 3];
        for i in XYZEnum::iter() {
            n_voxels[i as usize] = std::cmp::max(
                1 as i32,
                (diag[i] / bmax * max_voxels as Float).round() as i32,
            );
            // in the Lookup() method, we require that 20 or fewer
            // bits be sufficient to represent each coordinate
            // value. It's fairly hard to imagine that this would ever
            // be a problem.
            assert!(n_voxels[i as usize] < (1 << 20));
        }
        let hash_table_size: usize = (4 as i32 * n_voxels[0] * n_voxels[1] * n_voxels[2]) as usize;
        let mut hash_table: Vec<HashEntry> = Vec::with_capacity(hash_table_size);
        // let null: *mut Distribution1D = std::ptr::null_mut();
        for _i in 0..hash_table_size {
            let hash_entry: HashEntry = HashEntry {
                packed_pos: Atomic::new(INVALID_PACKED_POS),
                distribution: AtomSetOnce::empty(),
            };
            hash_table.push(hash_entry);
        }
        SpatialLightDistribution {
            scene: scene.clone(),
            n_voxels,
            hash_table: hash_table.into_boxed_slice(),
            hash_table_size,
        }
    }
    /// Compute the sampling distribution for the voxel with integer
    /// coordiantes given by "pi".
    pub fn compute_distribution(&self, pi: &Point3i) -> Distribution1D {
        // Compute the world-space bounding box of the voxel
        // corresponding to |pi|.
        let p0: Point3f = Point3f {
            x: pi[XYZEnum::X] as Float / self.n_voxels[0] as Float,
            y: pi[XYZEnum::Y] as Float / self.n_voxels[1] as Float,
            z: pi[XYZEnum::Z] as Float / self.n_voxels[2] as Float,
        };
        let p1: Point3f = Point3f {
            x: (pi[XYZEnum::X] + 1) as Float / self.n_voxels[0] as Float,
            y: (pi[XYZEnum::Y] + 1) as Float / self.n_voxels[1] as Float,
            z: (pi[XYZEnum::Z] + 1) as Float / self.n_voxels[2] as Float,
        };
        let voxel_bounds: Bounds3f = Bounds3f {
            p_min: self.scene.world_bound().lerp(&p0),
            p_max: self.scene.world_bound().lerp(&p1),
        };
        // Compute the sampling distribution. Sample a number of
        // points inside voxelBounds using a 3D Halton sequence; at
        // each one, sample each light source and compute a weight
        // based on Li/pdf for the light's sample (ignoring visibility
        // between the point in the voxel and the point on the light
        // source) as an approximation to how much the light is likely
        // to contribute to illumination in the voxel.
        let n_samples: usize = 128;
        let mut light_contrib: Vec<Float> = vec![0.0 as Float; self.scene.lights.len()];
        for i in 0..n_samples {
            let po: Point3f = voxel_bounds.lerp(&Point3f {
                x: radical_inverse(0, i as u64),
                y: radical_inverse(1, i as u64),
                z: radical_inverse(2, i as u64),
            });
            let time: Float = 0.0;
            let intr: Rc<InteractionCommon> = Rc::new(InteractionCommon {
                p: po,
                time,
                p_error: Vector3f::default(),
                wo: Vector3f {
                    x: 1.0,
                    y: 0.0,
                    z: 0.0,
                },
                n: Normal3f::default(),
                medium_interface: None,
            });
            // Use the next two Halton dimensions to sample a point on the
            // light source.
            let u: Point2f = Point2f {
                x: radical_inverse(3, i as u64),
                y: radical_inverse(4, i as u64),
            };
            for (j, item) in light_contrib
                .iter_mut()
                .enumerate()
                .take(self.scene.lights.len())
            {
                let mut light_intr: InteractionCommon = InteractionCommon::default();
                let mut pdf: Float = 0.0 as Float;
                let mut wi: Vector3f = Vector3f::default();
                let mut vis: VisibilityTester = VisibilityTester::default();
                let li: Spectrum = self.scene.lights[j].sample_li(
                    &intr,
                    &mut light_intr,
                    u,
                    &mut wi,
                    &mut pdf,
                    &mut vis,
                );
                if pdf > 0.0 as Float {
                    // TODO: look at tracing shadow rays / computing
                    // beam transmittance. Probably shouldn't give
                    // those full weight but instead e.g. have an
                    // occluded shadow ray scale down the contribution
                    // by 10 or something.
                    *item += li.y() / pdf;
                }
            }
        }
        // We don't want to leave any lights with a zero probability;
        // it's possible that a light contributes to points in the
        // voxel even though we didn't find such a point when sampling
        // above. Therefore, compute a minimum (small) weight and
        // ensure that all lights are given at least the corresponding
        // probability.
        let sum_contrib: Float = light_contrib.iter().sum();
        let avg_contrib: Float = sum_contrib / (n_samples * light_contrib.len()) as Float;
        let min_contrib = if avg_contrib > 0.0 as Float {
            0.001 * avg_contrib
        } else {
            1.0 as Float
        };
        for item in &mut light_contrib {
            // println!("Voxel pi = {:?}, light {:?} contrib = {:?}",
            //          pi, i, light_contrib[i]);
            *item = item.max(min_contrib);
        }
        // println!("Initialized light distribution in voxel pi= {:?}, avg_contrib = {:?}",
        //          pi, avg_contrib);
        // Compute a sampling distribution from the accumulated contributions.
        Distribution1D::new(light_contrib)
    }

    // LightDistribution

    /// Given a point |p| in space, this method returns a (hopefully
    /// effective) sampling distribution for light sources at that
    /// point.
    pub fn lookup(&self, p: &Point3f) -> Arc<Distribution1D> {
        // TODO: ProfilePhase _(Prof::LightDistribLookup);
        // TODO: ++nLookups;

        // first, compute integer voxel coordinates for the given
        // point |p| with respect to the overall voxel grid.
        let offset: Vector3f = self.scene.world_bound().offset(&p); // offset in [0,1].
        let mut pi: Point3i = Point3i::default();
        for i in XYZEnum::iter() {
            // the clamp should almost never be necessary, but is
            // there to be robust to computed intersection points
            // being slightly outside the scene bounds due to
            // floating-point roundoff error.
            pi[i] = clamp_t(
                (offset[i] * self.n_voxels[i as usize] as Float) as i32,
                0_i32,
                self.n_voxels[i as usize] - 1_i32,
            );
        }
        // pack the 3D integer voxel coordinates into a single 64-bit value.
        let packed_pos: u64 = ((pi[XYZEnum::X] as u64) << 40)
            | ((pi[XYZEnum::Y] as u64) << 20)
            | (pi[XYZEnum::Z] as u64);
        assert_ne!(packed_pos, INVALID_PACKED_POS);
        // Compute a hash value from the packed voxel coordinates. We
        // could just take packed_Pos mod the hash table size, but
        // since packed_Pos isn't necessarily well distributed on its
        // own, it's worthwhile to do a little work to make sure that
        // its bits values are individually fairly random. For details
        // of and motivation for the following, see:
        // http://zimbry.blogspot.ch/2011/09/better-bit-mixing-improving-on.html
        let mut hash: u64 = packed_pos;
        hash ^= hash >> 31;
        hash = hash.wrapping_mul(0x7fb5_d329_728e_a185);
        hash ^= hash >> 27;
        hash = hash.wrapping_mul(0x81da_def4_bc2d_d44d);
        hash ^= hash >> 33;
        hash %= self.hash_table_size as u64;
        // Now, see if the hash table already has an entry for the
        // voxel. We'll use quadratic probing when the hash table
        // entry is already used for another value; step stores the
        // square root of the probe step.
        let mut step: u64 = 1;
        // TODO: int nProbes = 0;
        loop {
            // TODO: ++nProbes;
            let entry: &HashEntry = &self.hash_table[hash as usize];
            // does the hash table entry at offset |hash| match the current point?
            let entry_packed_pos: u64 = entry.packed_pos.load(Ordering::Acquire);
            if entry_packed_pos == packed_pos {
                // Yes! Most of the time, there should already by a light
                // sampling distribution available.
                let option: Option<Arc<Distribution1D>> = entry.distribution.dup(Ordering::Acquire);
                if option.is_none() {
                    // Rarely, another thread will have already done a
                    // lookup at this point, found that there isn't a
                    // sampling distribution, and will already be
                    // computing the distribution for the point. In
                    // this case, we spin until the sampling
                    // distribution is ready. We assume that this is a
                    // rare case, so don't do anything more
                    // sophisticated than spinning.
                    loop {
                        let option2: &Option<Arc<Distribution1D>> =
                            &entry.distribution.dup(Ordering::Acquire);
                        if option2.is_some() {
                            if let Some(ref dist) = *option2 {
                                // We have a valid sampling distribution.
                                return dist.clone();
                            }
                        }
                    }
                } else {
                    // We have a valid sampling distribution.
                    return option.as_ref().unwrap().clone();
                }
            } else if entry_packed_pos != INVALID_PACKED_POS {
                // The hash table entry we're checking has already
                // been allocated for another voxel. Advance to the
                // next entry with quadratic probing.
                hash += step * step;
                if hash >= self.hash_table_size as u64 {
                    hash %= self.hash_table_size as u64;
                }
                step += 1_u64;
            } else {
                // We have found an invalid entry. (Though this may
                // have changed since the load into entryPackedPos
                // above.)  Use an atomic compare/exchange to try to
                // claim this entry for the current position.
                let invalid: u64 = INVALID_PACKED_POS;
                let success = entry
                    .packed_pos
                    .compare_exchange_weak(invalid, packed_pos, Ordering::SeqCst, Ordering::Relaxed)
                    .is_ok();
                if success {
                    // Success; we've claimed this position for this
                    // voxel's distribution. Now compute the sampling
                    // distribution and add it to the hash table.
                    let dist: Distribution1D = self.compute_distribution(&pi);
                    let arc_dist: Arc<Distribution1D> = Arc::new(dist);
                    entry
                        .distribution
                        .set_if_none(arc_dist.clone(), Ordering::Release);
                    return arc_dist;
                }
            }
        }
    }
}

// see lightdistrib.cpp

const INVALID_PACKED_POS: u64 = 0xffff_ffff_ffff_ffff;

/// Decides based on the name and the number of scene lights which
/// light distribution to return.
pub fn create_light_sample_distribution(
    name: String,
    scene: &Scene,
) -> Option<Arc<LightDistribution>> {
    if name == "uniform" || scene.lights.len() == 1 {
        Some(Arc::new(LightDistribution::Uniform(
            UniformLightDistribution::new(scene),
        )))
    } else if name == "power" {
        Some(Arc::new(LightDistribution::Power(
            PowerLightDistribution::new(scene),
        )))
    } else if name == "spatial" {
        Some(Arc::new(LightDistribution::Spatial(
            SpatialLightDistribution::new(scene, 64),
        )))
    } else {
        println!(
            "Light sample distribution type \"{:?}\" unknown. Using \"spatial\".",
            name
        );
        Some(Arc::new(LightDistribution::Spatial(
            SpatialLightDistribution::new(scene, 64),
        )))
    }
}