1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
//! Spline-based interpolation to reconstruct BSDF values (instead of
//! using large lookup tables).

// std
use std::f32::consts::PI;
// others
use smallvec::SmallVec;
// pbrt
use crate::core::pbrt::find_interval;
use crate::core::pbrt::Float;
use crate::core::pbrt::INV_2_PI;

/// Calculates an offset and four weights for Catmull-Rom spline
/// interpolation.
pub fn catmull_rom_weights(
    nodes: &[Float],
    x: Float,
    offset: &mut i32,
    weights: &mut [Float; 4],
) -> bool {
    // return _false_ if _x_ is out of bounds
    if !(x >= *nodes.first().unwrap() && x <= *nodes.last().unwrap()) {
        return false;
    }
    // search for the interval _idx_ containing _x_
    let idx: i32 = find_interval(nodes.len() as i32, |index| nodes[index as usize] <= x);
    *offset = idx - 1;
    assert!(idx >= 0);
    let x0: Float = nodes[idx as usize];
    let x1: Float = nodes[(idx + 1) as usize];
    // compute the $t$ parameter and powers
    let t: Float = (x - x0) / (x1 - x0);
    let t2: Float = t * t;
    let t3: Float = t2 * t;
    // compute initial node weights $w_1$ and $w_2$
    weights[1] = 2.0 as Float * t3 - 3.0 as Float * t2 + 1.0 as Float;
    weights[2] = -2.0 as Float * t3 + 3.0 as Float * t2;
    // compute first node weight $w_0$
    if idx > 0_i32 {
        let w0: Float = (t3 - 2.0 as Float * t2 + t) * (x1 - x0) / (x1 - nodes[(idx - 1) as usize]);
        weights[0] = -w0;
        weights[2] += w0;
    } else {
        let w0: Float = t3 - 2.0 as Float * t2 + t;
        weights[0] = 0.0 as Float;
        weights[1] -= w0;
        weights[2] += w0;
    }
    // compute last node weight $w_3$
    if (idx + 2) < nodes.len() as i32 {
        let w3: Float = (t3 - t2) * (x1 - x0) / (nodes[(idx + 2) as usize] - x0);
        weights[1] -= w3;
        weights[3] = w3;
    } else {
        let w3: Float = t3 - t2;
        weights[1] -= w3;
        weights[2] += w3;
        weights[3] = 0.0 as Float;
    }
    true
}

/// Importance sampling of 2D functions via spline interpolants.
pub fn sample_catmull_rom_2d(
    nodes1: &[Float],
    nodes2: &[Float],
    values: &[Float],
    cdf: &[Float],
    alpha: Float,
    u: Float,
    fval: Option<&mut Float>,
    pdf: Option<&mut Float>,
) -> Float {
    let size2: i32 = nodes2.len() as i32;
    // local copy
    let mut u: Float = u;
    // determine offset and coefficients for the _alpha_ parameter
    let mut offset: i32 = 0;
    let mut weights: [Float; 4] = [0.0 as Float; 4];
    if !catmull_rom_weights(nodes1, alpha, &mut offset, &mut weights) {
        return 0.0 as Float;
    }
    // define a lambda function to interpolate table entries
    let interpolate = |array: &[Float], idx: i32| -> Float {
        let mut value: Float = 0.0;
        for (i, weight) in weights.iter().enumerate() {
            if *weight != 0.0 as Float {
                let index: i32 = (offset + i as i32) * size2 + idx;
                assert!(index >= 0);
                value += array[index as usize] * *weight;
            }
        }
        value
    };
    // map _u_ to a spline interval by inverting the interpolated _cdf_
    let maximum: Float = interpolate(cdf, size2 - 1_i32);
    u *= maximum;
    let idx: i32 = find_interval(size2, |index| interpolate(cdf, index) <= u);
    // look up node positions and interpolated function values
    let f0: Float = interpolate(values, idx);
    let f1: Float = interpolate(values, idx + 1);
    assert!(idx >= 0);
    let x0: Float = nodes2[idx as usize];
    let x1: Float = nodes2[(idx + 1) as usize];
    let width: Float = x1 - x0;
    // re-scale _u_ using the interpolated _cdf_
    u = (u - interpolate(cdf, idx)) / width;
    // approximate derivatives using finite differences of the interpolant
    let d0: Float;
    let d1: Float;
    if idx > 0_i32 {
        d0 = width * (f1 - interpolate(values, idx - 1)) / (x1 - nodes2[(idx - 1) as usize]);
    } else {
        d0 = f1 - f0;
    }
    if (idx + 2) < size2 {
        d1 = width * (interpolate(values, idx + 2) - f0) / (nodes2[(idx + 2) as usize] - x0);
    } else {
        d1 = f1 - f0;
    }

    // invert definite integral over spline segment and return solution

    // set initial guess for $t$ by importance sampling a linear interpolant
    let mut t = if f0 != f1 {
        (f0 - (0.0 as Float)
            .max(f0 * f0 + 2.0 as Float * u * (f1 - f0))
            .sqrt())
            / (f0 - f1)
    } else {
        u / f0
    };
    let mut a: Float = 0.0;
    let mut b: Float = 1.0;
    let mut f_hat;
    let mut fhat;
    loop {
        // fall back to a bisection step when _t_ is out of bounds
        if !(t >= a && t <= b) {
            t = 0.5 as Float * (a + b);
        }
        // evaluate target function and its derivative in Horner form
        f_hat = t
            * (f0
                + t * (0.5 as Float * d0
                    + t * ((1.0 as Float / 3.0 as Float) * (-2.0 as Float * d0 - d1) + f1 - f0
                        + t * (0.25 as Float * (d0 + d1) + 0.5 as Float * (f0 - f1)))));
        fhat = f0
            + t * (d0
                + t * (-2.0 as Float * d0 - d1
                    + 3.0 as Float * (f1 - f0)
                    + t * (d0 + d1 + 2.0 as Float * (f0 - f1))));
        // stop the iteration if converged
        if (f_hat - u).abs() < 1e-6 as Float || b - a < 1e-6 as Float {
            break;
        }
        // update bisection bounds using updated _t_
        if (f_hat - u) < 0.0 as Float {
            a = t;
        } else {
            b = t;
        }
        // perform a Newton step
        t -= (f_hat - u) / fhat;
    }
    // return the sample position and function value
    if let Some(fval) = fval {
        *fval = fhat;
    }
    if let Some(pdf) = pdf {
        *pdf = fhat / maximum;
    }
    x0 + width * t
}

pub fn integrate_catmull_rom(
    n: i32,
    x: &[Float],
    offset: usize,
    values: &[Float],
    cdf: &mut Vec<Float>,
) -> Float {
    let mut sum: Float = 0.0;
    cdf[offset] = 0.0 as Float;
    for i in 0..(n - 1) as usize {
        // look up $x_i$ and function values of spline segment _i_
        let x0: Float = x[i];
        let x1: Float = x[i + 1];
        let f0: Float = values[offset + i];
        let f1: Float = values[offset + i + 1];
        let width: Float = x1 - x0;
        // approximate derivatives using finite differences
        let d0: Float;
        let d1: Float;
        if i > 0 {
            d0 = width * (f1 - values[offset + i - 1]) / (x1 - x[i - 1]);
        } else {
            d0 = f1 - f0;
        }
        if i + 2 < n as usize {
            d1 = width * (values[offset + i + 2] - f0) / (x[i + 2] - x0);
        } else {
            d1 = f1 - f0;
        }
        // keep a running sum and build a cumulative distribution function
        sum += ((d0 - d1) * (1.0 as Float / 12.0 as Float) + (f0 + f1) * 0.5 as Float) * width;
        cdf[offset + i + 1] = sum;
    }
    sum
}

/// Evaluates the weighted sum of cosines.
pub fn fourier(a: &SmallVec<[Float; 128]>, si: usize, m: i32, cos_phi: f64) -> Float {
    let mut value: f64 = 0.0;
    // initialize cosine iterates
    let mut cos_k_minus_one_phi: f64 = cos_phi;
    let mut cos_k_phi: f64 = 1.0;
    for k in 0..m as usize {
        // add the current summand and update the cosine iterates
        value += a[si + k] as f64 * cos_k_phi;
        let cos_k_plus_one_phi: f64 = 2.0 as f64 * cos_phi * cos_k_phi - cos_k_minus_one_phi;
        cos_k_minus_one_phi = cos_k_phi;
        cos_k_phi = cos_k_plus_one_phi;
    }
    value as Float
}

/// Returns the value of the Fourier expansion at the sampled
/// position.
pub fn sample_fourier(
    ak: &SmallVec<[Float; 128]>,
    recip: &[Float],
    m: i32,
    u: Float,
    pdf: &mut Float,
    phi_ptr: &mut Float,
) -> Float {
    // local copy
    let mut u: Float = u;
    // pick a side and declare bisection variables
    let flip: bool;
    if u >= 0.5 as Float {
        flip = true;
        u = 1.0 as Float - 2.0 as Float * (u - 0.5 as Float);
    } else {
        flip = false;
        u *= 2.0 as Float;
    }
    let mut a: f64 = 0.0;
    let mut b: f64 = PI as f64;
    let mut phi: f64 = (0.5_f32 * PI) as f64;
    let mut cf: f64;
    let mut f: f64;
    loop {
        // evaluate $cf(\phi)$ and its derivative $f(\phi)$

        // initialize sine and cosine iterates
        let cos_phi: f64 = phi.cos();
        let sin_phi: f64 = ((0.0_f64).max(1.0_f64 - cos_phi * cos_phi)).sqrt();
        let mut cos_phi_prev: f64 = cos_phi;
        let mut cos_phi_cur: f64 = 1.0;
        let mut sin_phi_prev = -sin_phi;
        let mut sin_phi_cur: f64 = 0.0;
        // initialize _cf_ and _f_ with the first series term
        cf = ak[0] as f64 * phi;
        f = ak[0] as f64;
        for k in 1..m as usize {
            // compute next sine and cosine iterates
            let sin_phi_next: f64 = (2.0_f64 * cos_phi) * sin_phi_cur - sin_phi_prev;
            let cos_phi_next: f64 = (2.0_f64 * cos_phi) * cos_phi_cur - cos_phi_prev;
            sin_phi_prev = sin_phi_cur;
            sin_phi_cur = sin_phi_next;
            cos_phi_prev = cos_phi_cur;
            cos_phi_cur = cos_phi_next;
            // add the next series term to _cf_ and _f_
            cf += (ak[k] * recip[k]) as f64 * sin_phi_next;
            f += ak[k] as f64 * cos_phi_next;
        }
        cf -= (u * ak[0] * PI) as f64;
        // update bisection bounds using updated $\phi$
        if cf > 0.0 as f64 {
            b = phi;
        } else {
            a = phi;
        }
        // stop the Fourier bisection iteration if converged
        if cf.abs() < 1e-6 as f64 || b - a < 1e-6 as f64 {
            break;
        }
        // perform a Newton step given $f(\phi)$ and $cf(\phi)$
        phi -= cf / f;
        // fall back to a bisection step when $\phi$ is out of bounds
        if !(phi > a && phi < b) {
            phi = 0.5 as f64 * (a + b);
        }
    }
    // potentially flip $\phi$ and return the result
    if flip {
        phi = 2.0 as f64 * PI as f64 - phi;
    }
    *pdf = (INV_2_PI as f64 * f / ak[0] as f64) as Float;
    *phi_ptr = phi as Float;
    f as Float
}