1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
extern crate crossbeam;
extern crate num_cpus;

// std
use std;
use std::path::PathBuf;
use std::sync::mpsc;
use std::sync::Arc;
// pbrt
use core::camera::{Camera, CameraSample};
use core::film::Film;
use core::floatfile::read_float_file;
use core::geometry::{bnd2_expand, bnd2_union_pnt2, nrm_faceforward_vec3, pnt2_inside_bnd2};
use core::geometry::{Bounds2f, Normal3f, Point2f, Point3f, Ray, RayDifferential, Vector3f};
use core::interaction::InteractionCommon;
use core::light::VisibilityTester;
use core::lowdiscrepancy::radical_inverse;
use core::medium::Medium;
use core::paramset::ParamSet;
use core::pbrt::{lerp, quadratic};
use core::pbrt::{Float, Spectrum};
use core::reflection::refract;
use core::transform::{AnimatedTransform, Transform};

// see realistic.h

#[derive(Debug, Default, Copy, Clone)]
pub struct LensElementInterface {
    pub curvature_radius: Float,
    pub thickness: Float,
    pub eta: Float,
    pub aperture_radius: Float,
}

#[derive(Clone)]
pub struct RealisticCamera {
    // inherited from Camera (see camera.h)
    pub camera_to_world: AnimatedTransform,
    pub shutter_open: Float,
    pub shutter_close: Float,
    pub film: Arc<Film>,
    pub medium: Option<Arc<Medium + Send + Sync>>,
    // private data (see realistic.h)
    pub simple_weighting: bool,
    pub element_interfaces: Vec<LensElementInterface>,
    pub exit_pupil_bounds: Vec<Bounds2f>,
}

impl RealisticCamera {
    pub fn new(
        camera_to_world: AnimatedTransform,
        shutter_open: Float,
        shutter_close: Float,
        aperture_diameter: Float,
        focus_distance: Float,
        simple_weighting: bool,
        lens_data: &Vec<Float>,
        film: Arc<Film>,
        medium: Option<Arc<Medium + Send + Sync>>,
    ) -> Self {
        let mut element_interfaces: Vec<LensElementInterface> = Vec::new();
        for i in (0..lens_data.len()).step_by(4) {
            let mut diameter: Float = lens_data[i + 3];
            if lens_data[i] == 0.0 as Float {
                if aperture_diameter > lens_data[i + 3] {
                    println!("Specified aperture diameter {} is greater than maximum possible {}.  Clamping it.",
                             aperture_diameter,
                             lens_data[i + 3]);
                } else {
                    diameter = aperture_diameter;
                }
            }
            element_interfaces.push(LensElementInterface {
                curvature_radius: lens_data[i] * 0.001 as Float,
                thickness: lens_data[i + 1] * 0.001 as Float,
                eta: lens_data[i + 2],
                aperture_radius: diameter * 0.001 as Float / 2.0 as Float,
            });
            // println!("{:?}", element_interfaces[i / 4]);
        }
        let mut camera = RealisticCamera {
            camera_to_world: camera_to_world,
            shutter_open: shutter_open,
            shutter_close: shutter_close,
            film: film.clone(),
            medium: medium,
            simple_weighting: simple_weighting,
            element_interfaces: element_interfaces,
            exit_pupil_bounds: Vec::new(),
        };
        // compute lens--film distance for given focus distance
        let _fb: Float = camera.focus_binary_search(focus_distance);
        // LOG(INFO) << StringPrintf("Binary search focus: %f -> %f\n", fb,
        //                           camera.focus_distance(fb));
        camera.element_interfaces.last_mut().unwrap().thickness =
            camera.focus_thick_lens(focus_distance);
        // LOG(INFO) << StringPrintf("Thick lens focus: %f -> %f\n",
        //                           camera.element_interfaces.last().unwrap().thickness,
        //                           camera.focus_distance(elementInterfaces.back().thickness));
        // compute exit pupil bounds at sampled points on the film
        let n_samples: usize = 64;
        let mut exit_pupil_bounds: Vec<Bounds2f> = Vec::new();
        exit_pupil_bounds.resize(n_samples, Bounds2f::default());
        let num_cores: usize = num_cpus::get();
        let chunk_size: usize = n_samples / num_cores;
        {
            let bands: Vec<&mut [Bounds2f]> = exit_pupil_bounds.chunks_mut(chunk_size).collect();
            let camera = &camera;
            let film = &film;
            crossbeam::scope(|scope| {
                let (band_tx, band_rx) = mpsc::channel();
                // spawn worker threads
                for (b, band) in bands.into_iter().enumerate() {
                    let band_tx = band_tx.clone();
                    scope.spawn(move |_| {
                        for (index, bound) in band.into_iter().enumerate() {
                            let i: usize = (b * chunk_size) + index;
                            let r0: Float =
                                i as Float / n_samples as Float * film.diagonal / 2.0 as Float;
                            let r1: Float = (i + 1) as Float / n_samples as Float * film.diagonal
                                / 2.0 as Float;
                            *bound = camera.bound_exit_pupil(r0, r1);
                        }
                    });
                    // send progress through the channel to main thread
                    band_tx.send(b).expect(&format!("Failed to send progress"));
                }
                // spawn thread to report progress
                scope.spawn(move |_| {
                    for _ in pbr::PbIter::new(0..num_cores) {
                        band_rx.recv().unwrap();
                    }
                });
            }).unwrap();
        }
        camera.exit_pupil_bounds = exit_pupil_bounds;
        if camera.simple_weighting {
            println!("WARNING: \"simpleweighting\" option with RealisticCamera no longer necessarily matches regular camera images. Further, pixel values will vary a bit depending on the aperture size. See this discussion for details: https://github.com/mmp/pbrt-v3/issues/162#issuecomment-348625837");
        }
        camera
    }
    pub fn create(
        params: &ParamSet,
        cam2world: AnimatedTransform,
        film: Arc<Film>,
        medium: Option<Arc<Medium + Send + Sync>>,
        search_directory: Option<&Box<PathBuf>>,
    ) -> Arc<Camera + Send + Sync> {
        let shutteropen: Float = params.find_one_float("shutteropen", 0.0);
        let shutterclose: Float = params.find_one_float("shutterclose", 1.0);
        // TODO: std::swap(shutterclose, shutteropen);
        assert!(shutterclose >= shutteropen);
        // realistic camera-specific parameters
        let mut lens_file: String = params.find_one_filename("lensfile", String::from(""));
        if lens_file != String::from("") {
            if let Some(ref search_directory) = search_directory {
                let mut path_buf: PathBuf = PathBuf::from("/");
                path_buf.push(search_directory.as_ref());
                path_buf.push(lens_file);
                lens_file = String::from(path_buf.to_str().unwrap());
            }
        }
        if lens_file == "" {
            println!("ERROR: No lens description file supplied!");
        } else {
            println!("lens_file = {:?}", lens_file);
        }
        let aperture_diameter: Float = params.find_one_float("aperturediameter", 1.0);
        let focus_distance: Float = params.find_one_float("focusdistance", 10.0);
        let simple_weighting: bool = params.find_one_bool("simpleweighting", true);
        let mut lens_data: Vec<Float> = Vec::new();
        if !read_float_file(&lens_file, &mut lens_data) {
            println!(
                "ERROR: Error reading lens specification file {:?}.",
                lens_file
            );
        }
        if lens_data.len() % 4_usize != 0_usize {
            println!("ERROR: Excess values in lens specification file {:?}; must be multiple-of-four values, read {}.",
                     lens_file, lens_data.len());
        }
        // println!("lens_data = {:?}", lens_data);
        let camera = Arc::new(RealisticCamera::new(
            cam2world,
            shutteropen,
            shutterclose,
            aperture_diameter,
            focus_distance,
            simple_weighting,
            &lens_data,
            film,
            medium,
        ));
        camera
    }
    pub fn generate_ray(&self, sample: &CameraSample, ray: &mut Ray) -> Float {
        // TODO: ProfilePhase prof(Prof::GenerateCameraRay);
        // ++totalRays;
        // find point on film, _p_film_, corresponding to _sample.p_film_
        let s: Point2f = Point2f {
            x: sample.p_film.x / self.film.full_resolution.x as Float,
            y: sample.p_film.y / self.film.full_resolution.y as Float,
        };
        let p_film2: Point2f = self.film.get_physical_extent().lerp(&s);
        let p_film: Point3f = Point3f {
            x: -p_film2.x,
            y: p_film2.y,
            z: 0.0 as Float,
        };
        // trace ray from _p_film_ through lens system
        let mut exit_pupil_bounds_area: Float = 0.0 as Float;
        let p_rear: Point3f = self.sample_exit_pupil(
            &Point2f {
                x: p_film.x,
                y: p_film.y,
            },
            &sample.p_lens,
            &mut exit_pupil_bounds_area,
        );
        let mut r_film: Ray = Ray::default();
        r_film.o = p_film;
        r_film.d = p_rear - p_film;
        r_film.t_max = std::f32::INFINITY;
        r_film.time = lerp(sample.time, self.shutter_open, self.shutter_close);
        if !self.trace_lenses_from_film(&r_film, Some(ray)) {
            // ++vignettedRays;
            return 0.0 as Float;
        }
        // finish initialization of _RealisticCamera_ ray
        *ray = self.camera_to_world.transform_ray(&ray);
        ray.d = ray.d.normalize();
        if let Some(ref medium_arc) = self.medium {
            ray.medium = Some(medium_arc.clone());
        } else {
            ray.medium = None;
        }
        // return weighting for _RealisticCamera_ ray
        let cos_theta: Float = r_film.d.normalize().z;
        let cos_2_theta: Float = cos_theta * cos_theta;
        let cos_4_theta: Float = cos_2_theta * cos_2_theta;
        if self.simple_weighting {
            cos_4_theta * exit_pupil_bounds_area / self.exit_pupil_bounds[0].area()
        } else {
            (self.shutter_close - self.shutter_open) * (cos_4_theta * exit_pupil_bounds_area)
                / (self.lens_rear_z() * self.lens_rear_z())
        }
    }
    pub fn lens_rear_z(&self) -> Float {
        self.element_interfaces.last().unwrap().thickness
    }
    pub fn lens_front_z(&self) -> Float {
        let mut z_sum = 0.0;
        for i in 0..self.element_interfaces.len() {
            let element = self.element_interfaces[i];
            z_sum += element.thickness
        }
        z_sum
    }
    pub fn rear_element_radius(&self) -> Float {
        self.element_interfaces.last().unwrap().aperture_radius
    }
    pub fn trace_lenses_from_film(&self, r_camera: &Ray, r_out: Option<&mut Ray>) -> bool {
        let mut element_z: Float = 0.0 as Float;
        // transform _rCamera_ from camera to lens system space
        let camera_to_lens: Transform = Transform::scale(1.0 as Float, 1.0 as Float, -1.0 as Float);
        let mut r_lens: Ray = camera_to_lens.transform_ray(r_camera);
        let ei_len = self.element_interfaces.len();
        for idx in 0..ei_len {
            let i = ei_len - 1 - idx;
            let element = self.element_interfaces[i];
            // update ray from film accounting for interaction with _element_
            element_z -= element.thickness;
            // compute intersection of ray with lens element
            let mut t: Float = 0.0 as Float;
            let mut n: Normal3f = Normal3f::default();
            let is_stop: bool = element.curvature_radius == 0.0 as Float;
            if is_stop {
                // The refracted ray computed in the previous lens
                // element interface may be pointed towards film
                // plane(+z) in some extreme situations; in such
                // cases, 't' becomes negative.
                if r_lens.d.z >= 0.0 as Float {
                    return false;
                }
                t = (element_z - r_lens.o.z) / r_lens.d.z;
            } else {
                let radius: Float = element.curvature_radius;
                let z_center: Float = element_z + element.curvature_radius;
                if !self.intersect_spherical_element(radius, z_center, &r_lens, &mut t, &mut n) {
                    return false;
                }
            }
            assert!(t >= 0.0 as Float);
            // test intersection point against element aperture
            let p_hit: Point3f = r_lens.position(t);
            let r2: Float = p_hit.x * p_hit.x + p_hit.y * p_hit.y;
            if r2 > element.aperture_radius * element.aperture_radius {
                return false;
            }
            r_lens.o = p_hit;
            // update ray path for element interface interaction
            if !is_stop {
                let mut w: Vector3f = Vector3f::default();
                let eta_i: Float = element.eta;
                let eta_t: Float;
                if i > 0_usize && self.element_interfaces[i - 1].eta != 0.0 as Float {
                    eta_t = self.element_interfaces[i - 1].eta;
                } else {
                    eta_t = 1.0 as Float;
                }
                if !refract(&(-r_lens.d).normalize(), &n, eta_i / eta_t, &mut w) {
                    return false;
                }
                r_lens.d = w;
            }
        }
        // transform _r_lens_ from lens system space back to camera space
        if let Some(r_out) = r_out {
            let lens_to_camera: Transform =
                Transform::scale(1.0 as Float, 1.0 as Float, -1.0 as Float);
            *r_out = lens_to_camera.transform_ray(&r_lens);
        }
        true
    }
    pub fn intersect_spherical_element(
        &self,
        radius: Float,
        z_center: Float,
        ray: &Ray,
        t: &mut Float,
        n: &mut Normal3f,
    ) -> bool {
        // compute _t0_ and _t1_ for ray--element intersection
        let o: Point3f = ray.o - Vector3f {
            x: 0.0 as Float,
            y: 0.0 as Float,
            z: z_center,
        };
        let a: Float = ray.d.x * ray.d.x + ray.d.y * ray.d.y + ray.d.z * ray.d.z;
        let b: Float = 2.0 as Float * (ray.d.x * o.x + ray.d.y * o.y + ray.d.z * o.z);
        let c: Float = o.x * o.x + o.y * o.y + o.z * o.z - radius * radius;
        let mut t0: Float = 0.0 as Float;
        let mut t1: Float = 0.0 as Float;
        if !quadratic(a, b, c, &mut t0, &mut t1) {
            return false;
        }
        // select intersection $t$ based on ray direction and element curvature
        let use_closer_t: bool = (ray.d.z > 0.0 as Float) ^ (radius < 0.0 as Float);
        if use_closer_t {
            *t = t0.min(t1);
        } else {
            *t = t0.max(t1);
        }
        if *t < 0.0 as Float {
            return false;
        }
        // compute surface normal of element at ray intersection point
        *n = Normal3f::from(Vector3f::from(o + ray.d * *t));
        *n = nrm_faceforward_vec3(&n.normalize(), &-ray.d);
        true
    }
    pub fn trace_lenses_from_scene(&self, r_camera: &Ray, r_out: Option<&mut Ray>) -> bool {
        let mut element_z: Float = -self.lens_front_z();
        // transform _r_camera_ from camera to lens system space
        let camera_to_lens: Transform = Transform::scale(1.0 as Float, 1.0 as Float, -1.0 as Float);
        let mut r_lens: Ray = camera_to_lens.transform_ray(r_camera);
        for i in 0..self.element_interfaces.len() {
            let element = self.element_interfaces[i];
            // compute intersection of ray with lens element
            let mut t: Float = 0.0 as Float;
            let mut n: Normal3f = Normal3f::default();
            let is_stop: bool = element.curvature_radius == 0.0 as Float;
            if is_stop {
                t = (element_z - r_lens.o.z) / r_lens.d.z;
            } else {
                let radius: Float = element.curvature_radius;
                let z_center: Float = element_z + element.curvature_radius;
                if !self.intersect_spherical_element(radius, z_center, &r_lens, &mut t, &mut n) {
                    return false;
                }
            }
            assert!(t >= 0.0 as Float);
            // test intersection point against element aperture
            let p_hit: Point3f = r_lens.position(t);
            let r2: Float = p_hit.x * p_hit.x + p_hit.y * p_hit.y;
            if r2 > element.aperture_radius * element.aperture_radius {
                return false;
            }
            r_lens.o = p_hit;
            // update ray path for from-scene element interface interaction
            if !is_stop {
                let mut wt: Vector3f = Vector3f::default();
                let eta_i: Float;
                if i == 0 || self.element_interfaces[i - 1].eta == 0.0 as Float {
                    eta_i = 1.0 as Float;
                } else {
                    eta_i = self.element_interfaces[i - 1].eta;
                }
                let eta_t: Float;
                if self.element_interfaces[i].eta != 0.0 as Float {
                    eta_t = self.element_interfaces[i].eta;
                } else {
                    eta_t = 1.0 as Float;
                }
                if !refract(&(-r_lens.d).normalize(), &n, eta_i / eta_t, &mut wt) {
                    return false;
                }
                r_lens.d = wt;
            }
            element_z += element.thickness;
        }
        // transform _r_lens_ from lens system space back to camera space
        if let Some(r_out) = r_out {
            let lens_to_camera: Transform =
                Transform::scale(1.0 as Float, 1.0 as Float, -1.0 as Float);
            *r_out = lens_to_camera.transform_ray(&r_lens);
        }
        true
    }
    pub fn draw_lens_system(&self) {
        // WORK
        println!("TODO: RealisticCamera::draw_lens_system()");
    }
    pub fn draw_ray_path_from_film(&self, _r: &Ray, _arrow: bool, _to_optical_intercept: bool) {
        // WORK
        println!("TODO: RealisticCamera::draw_ray_path_from_film()");
    }
    pub fn draw_ray_path_from_scene(&self, _r: &Ray, _arrow: bool, _to_optical_intercept: bool) {
        // WORK
        println!("TODO: RealisticCamera::draw_ray_path_from_scene()");
    }
    pub fn compute_cardinal_points(
        &self,
        r_in: &Ray,
        r_out: &Ray,
        idx: usize,
        pz: &mut [Float; 2],
        fz: &mut [Float; 2],
    ) {
        let tf: Float = -r_out.o.x / r_out.d.x;
        fz[idx] = -r_out.position(tf).z;
        let tp: Float = (r_in.o.x - r_out.o.x) / r_out.d.x;
        pz[idx] = -r_out.position(tp).z;
    }
    pub fn compute_thick_lens_approximation(&self, pz: &mut [Float; 2], fz: &mut [Float; 2]) {
        // find height $x$ from optical axis for parallel rays
        let x: Float = 0.001 as Float * self.film.diagonal;
        // compute cardinal points for film side of lens system
        let mut r_scene: Ray = Ray {
            o: Point3f {
                x: x,
                y: 0.0 as Float,
                z: self.lens_front_z() + 1.0 as Float,
            },
            d: Vector3f {
                x: 0.0 as Float,
                y: 0.0 as Float,
                z: -1.0 as Float,
            },
            t_max: std::f32::INFINITY,
            time: 0.0 as Float,
            medium: None,
            differential: None,
        };
        let mut r_film: Ray = Ray::default();
        assert!(self.trace_lenses_from_scene(&r_scene, Some(&mut r_film)),
                "Unable to trace ray from scene to film for thick lens approximation. Is aperture stop extremely small?");
        self.compute_cardinal_points(&r_scene, &r_film, 0, pz, fz);
        // compute cardinal points for scene side of lens system
        r_film.o = Point3f {
            x: x,
            y: 0.0 as Float,
            z: self.lens_rear_z() - 1.0 as Float,
        };
        r_film.d = Vector3f {
            x: 0.0 as Float,
            y: 0.0 as Float,
            z: 1.0 as Float,
        };
        assert!(self.trace_lenses_from_film(&r_film, Some(&mut r_scene)),
                "Unable to trace ray from film to scene for thick lens approximation. Is aperture stop extremely small?");
        self.compute_cardinal_points(&r_film, &r_scene, 1, pz, fz);
    }
    pub fn focus_thick_lens(&self, focus_distance: Float) -> Float {
        let mut pz: [Float; 2] = [0.0 as Float; 2];
        let mut fz: [Float; 2] = [0.0 as Float; 2];
        self.compute_thick_lens_approximation(&mut pz, &mut fz);
        // LOG(INFO) << StringPrintf("Cardinal points: p' = %f f' = %f, p = %f f = %f.\n",
        //                           pz[0], fz[0], pz[1], fz[1]);
        // LOG(INFO) << StringPrintf("Effective focal length %f\n", fz[0] - pz[0]);
        // compute translation of lens, _delta_, to focus at _focus_distance_
        let f: Float = fz[0] - pz[0];
        let z: Float = -focus_distance;
        let c: Float = (pz[1] - z - pz[0]) * (pz[1] - z - 4.0 as Float * f - pz[0]);
        assert!(c > 0.0 as Float,
                "Coefficient must be positive. It looks focus_distance: {} is too short for a given lenses configuration",
                focus_distance);
        let delta: Float = 0.5 as Float * (pz[1] - z + pz[0] - c.sqrt());
        self.element_interfaces.last().unwrap().thickness + delta
    }
    pub fn focus_binary_search(&self, focus_distance: Float) -> Float {
        // find _film_distance_lower_, _film_distance_upper_ that bound focus distance
        let mut film_distance_upper: Float = self.focus_thick_lens(focus_distance);
        let mut film_distance_lower: Float = film_distance_upper;
        while self.focus_distance(film_distance_lower) > focus_distance {
            film_distance_lower *= 1.005 as Float;
        }
        while self.focus_distance(film_distance_upper) < focus_distance {
            film_distance_upper /= 1.005 as Float;
        }
        // do binary search on film distances to focus
        for _i in 0..20 {
            let fmid: Float = 0.5 as Float * (film_distance_lower + film_distance_upper);
            let mid_focus: Float = self.focus_distance(fmid);
            if mid_focus < focus_distance {
                film_distance_lower = fmid;
            } else {
                film_distance_upper = fmid;
            }
        }
        0.5 as Float * (film_distance_lower + film_distance_upper)
    }
    pub fn focus_distance(&self, film_distance: Float) -> Float {
        // find offset ray from film center through lens
        let bounds: Bounds2f =
            self.bound_exit_pupil(0.0 as Float, 0.001 as Float * self.film.diagonal);
        let scale_factors: [Float; 3] = [0.1 as Float, 0.01 as Float, 0.001 as Float];
        let mut lu: Float = 0.0;
        let mut ray: Ray = Ray::default();
        // Try some different and decreasing scaling factor to find
        // focus ray more quickly when `aperturediameter` is too
        // small.  (e.g. 2 [mm] for `aperturediameter` with
        // wide.22mm.dat),
        let mut found_focus_ray: bool = false;
        for scale in scale_factors.into_iter() {
            lu = scale * bounds.p_max[0];
            if self.trace_lenses_from_film(
                &Ray {
                    o: Point3f {
                        x: 0.0 as Float,
                        y: 0.0 as Float,
                        z: self.lens_rear_z() - film_distance,
                    },
                    d: Vector3f {
                        x: lu,
                        y: 0.0 as Float,
                        z: film_distance,
                    },
                    t_max: std::f32::INFINITY,
                    time: 0.0 as Float,
                    medium: None,
                    differential: None,
                },
                Some(&mut ray),
            ) {
                found_focus_ray = true;
                break;
            }
        }
        if !found_focus_ray {
            println!(
                "ERROR: Focus ray at lens pos({},0) didn't make it through the lenses with film distance {}?!??",
                lu, film_distance);
            return std::f32::INFINITY;
        }
        // compute distance _zFocus_ where ray intersects the principal axis
        let t_focus: Float = -ray.o.x / ray.d.x;
        let mut z_focus: Float = ray.position(t_focus).z;
        if z_focus < 0.0 as Float {
            z_focus = std::f32::INFINITY;
        }
        z_focus
    }
    pub fn bound_exit_pupil(&self, p_film_x0: Float, p_film_x1: Float) -> Bounds2f {
        let mut pupil_bounds: Bounds2f = Bounds2f::default();
        // sample a collection of points on the rear lens to find exit pupil
        let n_samples: i32 = 1024 * 1024;
        let mut n_exiting_rays: i32 = 0;
        // compute bounding box of projection of rear element on sampling plane
        let rear_radius: Float = self.rear_element_radius();
        let proj_rear_bounds: Bounds2f = Bounds2f {
            p_min: Point2f {
                x: -1.5 as Float * rear_radius,
                y: -1.5 as Float * rear_radius,
            },
            p_max: Point2f {
                x: 1.5 as Float * rear_radius,
                y: 1.5 as Float * rear_radius,
            },
        };
        for i in 0..n_samples {
            // find location of sample points on $x$ segment and rear lens element
            let p_film: Point3f = Point3f {
                x: lerp(
                    (i as Float + 0.5 as Float) / n_samples as Float,
                    p_film_x0,
                    p_film_x1,
                ),
                y: 0.0 as Float,
                z: 0.0 as Float,
            };
            let u: [Float; 2] = [
                radical_inverse(0 as u16, i as u64),
                radical_inverse(1 as u16, i as u64),
            ];
            let p_rear: Point3f = Point3f {
                x: lerp(u[0], proj_rear_bounds.p_min.x, proj_rear_bounds.p_max.x),
                y: lerp(u[1], proj_rear_bounds.p_min.y, proj_rear_bounds.p_max.y),
                z: self.lens_rear_z(),
            };
            // expand pupil bounds if ray makes it through the lens system
            if pnt2_inside_bnd2(
                &Point2f {
                    x: p_rear.x,
                    y: p_rear.y,
                },
                &pupil_bounds,
            ) || self.trace_lenses_from_film(
                &Ray {
                    o: p_film,
                    d: p_rear - p_film,
                    t_max: std::f32::INFINITY,
                    time: 0.0 as Float,
                    medium: None,
                    differential: None,
                },
                None,
            ) {
                pupil_bounds = bnd2_union_pnt2(
                    &pupil_bounds,
                    &Point2f {
                        x: p_rear.x,
                        y: p_rear.y,
                    },
                );
                n_exiting_rays += 1;
            }
        }
        // return entire element bounds if no rays made it through the lens system
        if n_exiting_rays == 0_i32 {
            // println!(
            //     "Unable to find exit pupil in x = [{},{}] on film.",
            //     p_film_x0, p_film_x1
            // );
            return proj_rear_bounds;
        }
        // expand bounds to account for sample spacing
        pupil_bounds = bnd2_expand(
            &pupil_bounds,
            2.0 as Float * proj_rear_bounds.diagonal().length() / (n_samples as Float).sqrt(),
        );
        pupil_bounds
    }
    pub fn render_exit_pupil(&self, _sx: Float, _sy: Float, _filename: String) {
        // WORK
        println!("TODO: RealisticCamera::render_exit_pupil()");
    }
    pub fn sample_exit_pupil(
        &self,
        p_film: &Point2f,
        lens_sample: &Point2f,
        sample_bounds_area: &mut Float,
    ) -> Point3f {
        // find exit pupil bound for sample distance from film center
        let r_film: Float = (p_film.x * p_film.x + p_film.y * p_film.y).sqrt();
        let mut r_index: usize = (r_film / (self.film.diagonal / 2.0 as Float)
            * self.exit_pupil_bounds.len() as Float)
            .floor() as usize;
        r_index = (self.exit_pupil_bounds.len() - 1).min(r_index);
        let pupil_bounds: Bounds2f = self.exit_pupil_bounds[r_index];
        *sample_bounds_area = pupil_bounds.area();
        // generate sample point inside exit pupil bound
        let p_lens: Point2f = pupil_bounds.lerp(lens_sample);
        // return sample point rotated by angle of _p_film_ with $+x$ axis
        let mut sin_theta: Float = 0.0 as Float;
        if r_film != 0.0 as Float {
            sin_theta = p_film.y / r_film;
        }
        let mut cos_theta: Float = 1.0 as Float;
        if r_film != 0.0 as Float {
            cos_theta = p_film.x / r_film;
        }
        Point3f {
            x: cos_theta * p_lens.x - sin_theta * p_lens.y,
            y: sin_theta * p_lens.x + cos_theta * p_lens.y,
            z: self.lens_rear_z(),
        }
    }
    pub fn test_exit_pupil_bounds(&self) {
        // WORK
        println!("TODO: RealisticCamera::test_exit_pupil_bounds()");
    }
}

impl Camera for RealisticCamera {
    fn generate_ray_differential(&self, sample: &CameraSample, ray: &mut Ray) -> Float {
        let wt: Float = self.generate_ray(sample, ray);
        if wt == 0.0 as Float {
            return 0.0 as Float;
        }
        let mut rd = RayDifferential::default();
        // find camera ray after shifting a fraction of a pixel in the $x$ direction
        let mut wtx: Float = 0.0 as Float;
        let eps_values: [Float; 2] = [0.05 as Float, -0.05 as Float];
        for eps in eps_values.iter() {
            let mut sshift: CameraSample = *sample;
            sshift.p_film.x += eps;
            let mut rx: Ray = Ray::default();
            wtx = self.generate_ray(&sshift, &mut rx);
            rd.rx_origin = ray.o + (rx.o - ray.o) / *eps;
            rd.rx_direction = ray.d + (rx.d - ray.d) / *eps;
            if wtx != 0.0 as Float {
                break;
            }
        }
        if wtx == 0.0 as Float {
            return 0.0 as Float;
        }
        // find camera ray after shifting a fraction of a pixel in the $y$ direction
        let mut wty: Float = 0.0 as Float;
        for eps in eps_values.iter() {
            let mut sshift: CameraSample = *sample;
            sshift.p_film.y += eps;
            let mut ry: Ray = Ray::default();
            wty = self.generate_ray(&sshift, &mut ry);
            rd.ry_origin = ray.o + (ry.o - ray.o) / *eps;
            rd.ry_direction = ray.d + (ry.d - ray.d) / *eps;
            if wty != 0.0 as Float {
                break;
            }
        }
        if wty == 0.0 as Float {
            return 0.0 as Float;
        }
        // rd.has_differentials = true;
        ray.differential = Some(rd);
        wt
    }
    fn we(&self, _ray: &Ray, _p_raster2: Option<&mut Point2f>) -> Spectrum {
        panic!("camera::we() is not implemented!");
        // Spectrum::default()
    }
    fn pdf_we(&self, _ray: &Ray) -> (Float, Float) {
        // let mut pdf_pos: Float = 0.0;
        // let mut pdf_dir: Float = 0.0;
        panic!("camera::pdf_we() is not implemented!");
        // (pdf_pos, pdf_dir)
    }
    fn sample_wi(
        &self,
        _iref: &InteractionCommon,
        _u: &Point2f,
        _wi: &mut Vector3f,
        _pdf: &mut Float,
        _p_raster: &mut Point2f,
        _vis: &mut VisibilityTester,
    ) -> Spectrum {
        panic!("camera::sample_wi() is not implemented!");
        // Spectrum::default()
    }
    fn get_film(&self) -> Arc<Film> {
        self.film.clone()
    }
}